Bickerdike Allen Partners Architecture Acoustics Technology

# NOISE MODELLING REPORT

## ABP RFI 27 APR 2023

Report to

daa plc Old Central Terminal Building Dublin Airport Co Dublin Ireland

A11267\_23\_RP060\_3.0 13 September 2023

121 Salusbury Road London NW6 6RG T 020 7625 4411 F 020 7625 0250 mail@bickerdikeallen.com www.bickerdikeallen.com **Bickerdike Allen Partners LLP** is a limited liability partnership registered in England and Wales. Registered number: OC402418. Registered office: 6th Floor, 2 London Wall Place, London, EC2Y 5AU



Partners (members) David Charles, Philippa Gavey, Giles Greenhalgh, David Trew **Bickerdike Allen Partners LLP** is an integrated practice of Architects, Acousticians, and Construction Technologists, celebrating over 60 years of continuous practice.

Architects: Design and project management services which cover all stages of design, from feasibility and planning through to construction on site and completion.

Acoustic Consultants: Expertise in planning and noise, the control of noise and vibration and the sound insulation and acoustic treatment of buildings.

**Construction Technology Consultants:** Expertise in building cladding, technical appraisals and defect investigation and provision of construction expert witness services.

| Con | ntents                                | Page No. |
|-----|---------------------------------------|----------|
| 1.0 | Executive Summary                     | 4        |
| 2.0 | Introduction                          | 6        |
| 3.0 | Issue 1 – Impact of Peak Noise Levels | 7        |
| 4.0 | Issue 2 – Sensitivity Testing         | 13       |
| 5.0 | Issue 3 – Baseline years              |          |
|     |                                       |          |

Appendix 1: Glossary of Acoustic Terminology

This report and all matters referred to herein remain confidential to the Client unless specifically authorised otherwise, when reproduction and/or publication is verbatim and without abridgement. This report may not be reproduced in whole or in part or relied upon in any way by any third party for any purpose whatsoever without the express written authorisation of Bickerdike Allen Partners LLP. If any third party whatsoever comes into possession of this report and/or any underlying data or drawings then they rely on it entirely at their own risk and Bickerdike Allen Partners LLP accepts no duty or responsibility in negligence or otherwise to any such third party.

Bickerdike Allen Partners LLP hereby grant permission for the use of this report by the client body and its agents in the realisation of the subject development, including submission of the report to the design team, contractor and sub-contractors, relevant building control authority, relevant local planning authority and for publication on its website.

#### 1.0 EXECUTIVE SUMMARY

Following a request from An Bord Pleanála (ABP) this report provides the clarification and further information sought. While preparing this the opportunity has been taken to produce and EIAR Supplement to update the basis of the forecast future noise to allow for developments since the 2021 EIAR.

#### Impact of Peak Noise Levels

The probability of additional awakenings has been determined for the population in the same study area as the EIAR Supplement, which contains over 1 million people. The probability of additional awakenings is computed for each person, and expressed as overall totals of the expected number of additional awakenings across the total population.

While there are no specific criteria by which to judge the significance of the number of additional awakenings, the relative values for the scenarios can be compared. Considering the annual situation, a reduction is expected from 2018. In 2025 this is by around 40% irrespective of whether the proposed change to the controls at night proceeds. By 2035 a greater reduction is forecast, by around 55% with the proposed change, and 65% without it.

The EIAR assessed the effects of noise at night using the  $L_{night}$  metric to determine the population highly sleep-disturbed (%HSD). The values from that assessment are of a similar magnitude to the number of additional awakenings and show the same pattern across the scenarios.

#### Sensitivity Testing

Sensitivity testing has been undertaken on the future exposure of sensitive receptors, and of the resulting effect of the proposed Relevant Action. This considers two scenarios; the first assumes that for both the Permitted and Proposed scenarios the noise is  $1 \, dB(A)$  higher, and the second assumes that for both the Permitted and Proposed scenarios the noise is  $1 \, dB(A)$  lower.

Compared to the exposures detailed in the replacement Chapter 13 of the EIAR Supplement, those for the corresponding Permitted and Proposed scenarios where the noise is 1 dB(A) higher are consequently higher, and those for the corresponding Permitted and Proposed scenarios where the noise is 1 dB(A) lower are consequently lower.

In terms of significance for residential receptors the situation is that although the absolute numbers vary, the relationship between those with beneficial and adverse effect is generally consistent under each of the scenarios. When it comes to non residential receptors, the findings for the sensitivity scenarios are also consistent with those in the EIAR.

#### **Baseline years**

In relation to baseline years the response clarifies that when undertaking environmental assessment, the approach is to set out the current situation and then to consider what may happen in the future with or without the change being sought.

Information is presented on past night activity which demonstrates that 2014 was the last year in which the number of movements, both annually and in the summer period, were at least 25% below those in 2018.

The number of number of dwellings and people forecast to experience an increase in their  $L_{night}$  level to over 50 dB(A) and separately to over 55 dB(A) has been determined. This has been done by comparing against the situation in the Permitted Scenario in the relevant year. The results show that there are dwellings and populations whose exposure increases in both years under either the Proposed Scenario or the Proposed Reduced Scenario although the numbers are smaller in the case of the latter which has fewer movements.

The analysis also finds that in both of the Proposed scenarios there are dwellings and populations overflown by departures to the west from the South Runway that benefit compared to the Permitted scenarios. In particular this affects Blanchardstown and the surrounding communities which are relatively densely populated compared to other areas overflown.

## 2.0 INTRODUCTION

In a letter dated 27<sup>th</sup> April 2023, An Bord Pleanála (ABP) advised that, having regard to the documentation submitted and specifically the noise analysis undertaken in the EIAR, they requested that Dublin Airport Authority (daa) provide clarification and further information in under the following headings:

- 1. Impact of Peak L<sub>Amax</sub> Noise Levels from Air Traffic Movements (ATMs) on Sleep
- 2. Sensitivity Testing on the Population Numbers Covered by the Noise Contour Predictions
- 3. Baseline years assumed in the assessment

daa have retained Bickerdike Allen Partners LLP (BAP) to prepare the noise modelling information requested by ABP. This report considers each issue in turn and summarises the methodology, inputs to the model, and details the outputs where relevant. A response is also included on issue 3.

A glossary of acoustic terminology in contained in Appendix 1.

## 2.1 Update to Environmental Information

While preparing the information requested by ABP the opportunity has been taken to update the basis of the forecast future noise to allow for developments since the 2021 EIAR. Given the extensive nature of this update an EIAR Supplement has prepared including replacement chapters for certain topics and updates for other. The replacement Chapter 13, and specifically Appendix 13B, contains full details of the updated noise modelling methodology. In summary, the changes compared to 2021 are as follows:

- Updated forecasts which allow for the recent recovery in activity following the Covid pandemic and the ongoing modernisation of airline fleets
- Changes to the runway use assumption in the early morning, in particular that segregated mode, where either the North or South runway is used for departures, with the other used for arrivals, will occur
- Updated departures routes, in particular for westerly departures, based on recent radar data
- Changes to the distribution of the aircraft from the runways following analysis of the distribution of flights in 2022
- The noise modelling has also been updated allowing for more recent noise levels from airports Noise and Track Keeping system and radar information on flight profiles.

#### 3.0 ISSUE 1 – IMPACT OF PEAK NOISE LEVELS

#### 3.1 ABP Request and Clarification

The request from ABP was as follows:

You are requested to assess the probability of additional awakening due to the peak L<sub>A,s,Max</sub> of ATMs at night between 2300 and 0700hrs for the 92 day summer average of ATMs and airport modes, and for the single modes of airport operation and for the likelihood of additional awakenings for the overall annual average number of ATMs at night, based on the approach described in the review supporting the WHO ENG 2018 (Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and the Effects on Sleep – International Journal of Environmental Research and Public Health).

daa sought clarification on this and in their letter of 26 May 2023 ABP responded that:

Regarding scenarios to be tested the following years are acceptable;

I. 2018,

II. 2025 Permitted and,

Ill. 2025 Proposed

## 3.2 Awakenings

As noted in the ABP request, the EIAR assessed the effects of noise at night using the  $L_{night}$  metric using a standardised scale following the guidance in the World Health Organisation's (WHO) Environmental Noise Guidelines (2018). The WHO justify the use of this approach in Table 3 of the guidelines, and note that for the critical health outcome of effects on sleep ( $L_{night}$ ) that the percentage of the population highly sleep-disturbed (%HSD), self-reported, assessed with a standardised scale is 'the most meaningful, policy-relevant measure of this health outcome'<sup>1</sup>.

This approach was also endorsed by the European Commission in Directive 2020/367 which amends Annex III to Directive 2002/49/EC of the European Parliament and of the Council as regards the establishment of assessment methods for harmful effects of environmental noise. This amendment advises that for the purposes of the assessment of harmful effects three measures shall be considered, the one relating to night noise is high sleep disturbance. The directive advises that this is to be calculated from the L<sub>night</sub> metric.

<sup>&</sup>lt;sup>1</sup> World Health Organisation Europe Environmental Noise Guidelines for the European Region (2018): Table 3. Critical health outcomes, outcome measures identified and justifications for selection <u>https://www.who.int/europe/publications/i/item/9789289053563</u>

The L<sub>night</sub> metric is equivalent to the noise from all the individual events, so is a way of expressing the total noise at a location and allowing comparison between different exposures.

ABP note that aircraft noise is not experienced in an "average" fashion and so seek further information in addition to that provided by the  $L_{night}$  metric which is an energy average. However, it should be noted that the use of the  $L_{night}$  metric is not treating the aircraft noise as a steady level, it is simply a way of adding up the noise from the individual aircraft events in the period. In the supporting research the responses from individuals who have experienced a series of individual aircraft events are attributed to such an overall level to allow comparison to other recipients who have experienced a different series of aircraft events to establish a typical response.

The ABP request is for an alternative measure of sleep disturbance which assesses the probability of additional awakening based on the maximum noise level ( $L_{As,max}$ ) from individual events. This is set out in WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Effects on Sleep.

The term awakenings in this context is that used by researchers in the field and differs from the lay meaning of becoming awake and aware of your surroundings. As stated in the WHO systematic review referred to by ABP, the outcome of this research was the probability of 'a sleep stage change to awake or S1'.

The document also states that 'a healthy adult briefly awakens ca. 20 times during an 8 h bed period (most of these awakenings are too short to be remembered the next morning)'. Such an underlying level is relevant particularly when considering forecast additional awakenings due to a particular noise source.

## 3.3 Noise Modelling

For the awakenings assessment the maximum noise level (L<sub>As,max</sub>) from individual aircraft events have been determined across the receptors in the study area. The maximum noise levels at the individual receptors have then been used to determine the probability of each aircraft event causing an awakening, separately for each receptor. These have then been combined with the number of times each event occurs on an average night to determine an expected number of awakenings. The totals for each of the receptors have then been combined to give a single value for the population set.

For example, if an aircraft event produced a noise level that gave a 10% chance of an awakening at 10 receptors, then the expected number of awakenings would be 1, although for each individual receptor the chance of an awakening is only 10%.

For 2018 the existing noise modelling already included contours giving the number of times a specific noise level was exceeded at night. These were extended to determine the number of events at the relevant maximum noise levels across all the dwellings in the study area.

For 2025 and 2035 the noise levels were determined using the updated model, allowing for recent noise levels, routes and radar data, by aircraft type and modelled track. This equated to almost 3,000 individual cases after allowance was also made for different flight lengths which affect aircraft weight because of the fuel needed.

The same study area was used for all of the awakenings assessments and is described in replacement Chapter 13 of the EIAR Supplement, and specifically Appendix 13B section 13B.3 and Figure 13B-1.

To convert the predicted external noise levels to internal noise levels a reduction of 21 dB has been assumed. This is the value selected in the WHO Europe Night Noise Guidelines for Europe (2009). It is a composite value with an allowance for windows not always being closed. The guidelines note that this is a relatively low value and is subject to national and cultural differences. The assessment therefore makes an allowance for the existing and proposed enhancement of the sound insulation scheme at the airport.

## 3.4 Noise Outputs

## 3.4.1 Annual

The noise modelling described in Section 3.3 has been used to determine the expected number of additional awakenings for 2018, 2025 and 2035 based the annual average nightly movements, and these are given in Table 1 below. They show a reduction over time from 2018 with or without the proposed Relevant Action.

| Year           | Nightly Additional Awakenings |  |
|----------------|-------------------------------|--|
| 2018           | 46,261                        |  |
| 2025 Permitted | 27,094                        |  |
| 2025 Proposed  | 26,785                        |  |
| 2035 Permitted | 16,087                        |  |
| 2035 Proposed  | 20,536                        |  |

Table 1: Nightly Additional Awakenings based on Annual Average

## 3.4.2 Summer

For the future years additional the expected number of additional awakenings based on the summer average nightly movements are given in Table 2 below. These are higher than those based on the annual average, due to greater activity in the summer.

| Year           | Nightly Additional Awakenings |  |
|----------------|-------------------------------|--|
| 2025 Permitted | 30,416                        |  |
| 2025 Proposed  | 30,095                        |  |
| 2035 Permitted | 18,062                        |  |
| 2035 Proposed  | 23,074                        |  |

Table 2: Nightly Additional Awakenings based on Summer Average

3.4.3 Annual – Single Mode

For the future years the expected number of additional awakenings based on the annual average nightly movements and easterly operations are given in Table 3 below. These are higher than those based on the average split of easterly and westerly operations.

| Year           | Nightly Additional Awakenings |  |
|----------------|-------------------------------|--|
| 2025 Permitted | 33,326                        |  |
| 2025 Proposed  | 40,985                        |  |
| 2035 Permitted | 20,849                        |  |
| 2035 Proposed  | 33,089                        |  |

#### Table 3: Nightly Additional Awakenings based on Annual Average – Easterly Operations

For the future years the expected number of additional awakenings based on the annual average nightly movements and westerly operations are given in Table 4 below. These are lower than those based on the average split of easterly and westerly operations.

| Year           | Nightly Additional Awakenings |  |
|----------------|-------------------------------|--|
| 2025 Permitted | 24,515                        |  |
| 2025 Proposed  | 21,468                        |  |
| 2035 Permitted | 14,075                        |  |
| 2035 Proposed  | 15,801                        |  |

Table 4: Nightly Additional Awakenings based on Annual Average – Westerly Operations

## 3.4.4 Summer – Single Mode

For the future years the expected number of additional awakenings based on the summer average nightly movements and easterly operations are given in Table 5 below. These are higher than those based on the average split of easterly and westerly operations.

| Year           | Nightly Additional Awakenings |  |
|----------------|-------------------------------|--|
| 2025 Permitted | 37,413                        |  |
| 2025 Proposed  | 46,051                        |  |
| 2035 Permitted | 23,409                        |  |
| 2035 Proposed  | 37,179                        |  |

Table 5: Nightly Additional Awakenings based on Summer Average – Easterly Operations

For the future years the expected number of additional awakenings based on the annual average nightly movements and westerly operations are given in Table 6 below. These are lower than those based on the average split of easterly and westerly operations.

| Year           | Nightly Additional Awakenings |
|----------------|-------------------------------|
| 2025 Permitted | 27,522                        |
| 2025 Proposed  | 24,121                        |
| 2035 Permitted | 15,803                        |
| 2035 Proposed  | 17,754                        |

Table 6: Nightly Additional Awakenings based on Summer Average – Westerly Operations

#### 3.5 Discussion

When considering the expected number of nightly awakenings given in Section 3.4 it should be noted that they relate to a population of over 1 million people, and that awakenings occur irrespective of the any aircraft noise events. The WHO notes a healthy adult briefly awakens ca. 20 times during an 8 h bed period. Combining these values gives an underlying level of awakenings of ca. 20 million. In comparison to this the additional awakenings due to aircraft noise are much lower.

Given the size of the population under consideration, this also means that for much of the population the chance of an additional awakening is low, and on average it is under 3%.

While there are no specific criteria by which to judge the significance of the number of additional awakenings the relative values for the scenarios can be compared. Considering the annual situation, a reduction is expected from 2018. In 2025 this is by around 40% irrespective of

whether the proposed change to the controls at night proceeds. By 2035 a greater reduction is forecast, by around 55% with the proposed change, and 65% without it.

Looking at the future years in more detail, the forecast level on a summer night is 12% higher than on an annual night, due to the greater number of movements. During nights with easterly operations the values are higher than the average for the relevant period, annual or summer, whereas on the more common nights with westerly operations they are lower than the average.

As noted in Section 3.2 above, the EIAR assessed the effects of noise at night using the  $L_{night}$  metric to determine the population highly sleep-disturbed (%HSD). The values from that assessment are of a similar magnitude to the number of additional awakenings and show the same pattern across the scenarios.

#### 4.0 ISSUE 2 – SENSITIVITY TESTING

#### 4.1 ABP Request and Clarification

The request from ABP was as follows:

To better understand what the consequences of uncertainty in the input data might be, or at least the associated trends with such uncertainty on the area covered, and the population affected by the noise contours presented in the EIAR. You are requested to present further analysis by sensitivity testing of:

- (a) the noise contours,
- (b) the area covered and

(c) crucially the number and type of sensitive receptors affected when assessed using the

significance criteria in the EIAR, based on the assumption of +/- 1 dBA change in the predicted noise levels (crudely equivalent to an approximately 25% change in the area of the noise contours or all things being equal the number of ATMs used to calculate the noise contours).

## 4.2 Approach

Information has been prepared in response to the request for the years of 2025 and 2035. The approach has been to consider two scenarios for each year. In the first it is assumed that for both the Permitted and Proposed scenarios the noise is 1 dB(A) higher. For the second it is assumed that for the Permitted and Proposed scenarios the noise is 1 dB(A) lower.

This approach is on the basis that the input data for the future scenarios both Permitted and Proposed are either the same in both scenarios, for example the noise performance of the aircraft and the routes flown, or are related, like the forecasts. The latter have a common basis, with adjustments made to reflect the difference between the scenarios. Also given the other controls on the airport such as the limit on passenger numbers, for which no change is sought as part of this application, there being significantly more movements in the Proposed scenario than the Permitted scenario does not seem realistic.

The results prepared include noise contours, their areas, and the sensitive receptors they contain, both residential and other noise sensitive buildings. No allowance has been made in the figures for any benefits of sound insulation schemes, as these could vary in extent and so would be another variable.

#### 4.3 Noise Outputs

#### 4.3.1 2025 Lden – Predicted Levels 1 dB(A) Higher

Figure 01 shows  $L_{den}$  noise contours for the 2025 Proposed (+1 dB(A)) Scenario and Figure 02 the corresponding contours for the 2025 Permitted (+1 dB(A)) Scenario.

For the 2025 scenarios L<sub>den</sub> contours, the number of dwellings and the estimated population that they contain have been determined as described in replacement Chapter 13 of the EIAR Supplement, and specifically Appendix 13B Air Noise Methodology section 13B.4. This has been done based on the existing dwellings and population excluding consented developments, and also based on the existing dwellings and population allowing for consented developments and land zoned for residential development. The results for the Permitted (+1 dB(A)) Scenario are given by contour in Table 7 along with the areas of the contours. The results for the Proposed (+1 dB(A)) Scenario are given by contour in Table 8 along with the areas of the contours.

The contour results presented in this report are all cumulative, e.g. any dwellings inside a 55 dB contour are also included in the totals for any lower value contour.

| Scenario                 |            | 2025 Permitted (+1 dB(A))        |             |                                  |            |
|--------------------------|------------|----------------------------------|-------------|----------------------------------|------------|
| Contourd                 | Area (km²) | Excluding Consented Developments |             | Including Consented Developments |            |
| Contour L <sub>den</sub> |            | Dwellings                        | Population. | Dwellings                        | Population |
| 45                       | 705.2      | 147,154                          | 432,582     | 160,531                          | 474,956    |
| 50                       | 263.6      | 42,197                           | 127,196     | 50,953                           | 154,213    |
| 55                       | 109.0      | 9,659                            | 29,525      | 16,438                           | 50,333     |
| 60                       | 41.3       | 1,699                            | 4,551       | 4,132                            | 12,175     |
| 65                       | 13.5       | 121                              | 338         | 121                              | 338        |
| 70                       | 4.4        | 6                                | 19          | 6                                | 19         |

| Table 7: Areas, number of dwellings and population | in 2025 Permitted L <sub>den</sub> contours |
|----------------------------------------------------|---------------------------------------------|
|----------------------------------------------------|---------------------------------------------|

| Scenario                 |                           | 2025 Proposed (+1 dB(A))         |             |                                  |            |
|--------------------------|---------------------------|----------------------------------|-------------|----------------------------------|------------|
| Contourl                 | <sub>den</sub> Area (km²) | Excluding Consented Developments |             | Including Consented Developments |            |
| Contour L <sub>den</sub> |                           | Dwellings                        | Population. | Dwellings                        | Population |
| 45                       | 824.2                     | 139,298                          | 407,521     | 151,167                          | 444,530    |
| 50                       | 293.6                     | 45,912                           | 137,544     | 54,904                           | 165,309    |
| 55                       | 122.0                     | 10,850                           | 31,246      | 17,869                           | 52,720     |
| 60                       | 48.2                      | 1,968                            | 5,532       | 4,319                            | 12,729     |
| 65                       | 16.1                      | 206                              | 685         | 258                              | 882        |
| 70                       | 5.6                       | 23                               | 70          | 23                               | 70         |

Table 8: Areas, number of dwellings and population in 2025 Proposed Lden contours

The 2025 Proposed (+1 dB(A)) Scenario is compared with the 2025 Permitted (+1 dB(A)) Scenario in Table 9. The table includes all people in existing residential receptors who are exposed to at least 45 dB  $L_{den}$  in at least one of the scenarios. People who are exposed to negligible absolute noise levels in both scenarios are assessed as not being subject to significant effects and so have not been included.

| Magnitude of effect | No. people with Beneficial Effect | No. people with Adverse Effect |
|---------------------|-----------------------------------|--------------------------------|
| Imperceptible       | 70,494                            | 229,337                        |
| Not Significant     | 74,054                            | 43,311                         |
| Slight              | 5,511                             | 14,282                         |
| Moderate            | 5,310                             | 3,759                          |
| Significant         | 8,487                             | 186                            |
| Very Significant    | 0                                 | 0                              |
| Profound            | 0                                 | 0                              |

#### Table 9: Air Noise (L<sub>den</sub>) People by Magnitude of effect – 2025 Proposed vs 2025 Permitted

In addition to the consideration of residential properties, other potential receptors of high sensitivity are included in the EIAR assessment, specifically schools, residential healthcare facilities and places of worship. The numbers of each of these above the thresholds given in the EIAR for the 2025 Proposed (+1 dB(A)) Scenario are given in Table 10, where they are compared with the numbers for the 2025 Permitted (+1 dB(A)) Scenario.

|                           | No. Receptors Above Threshold for Medium Absolute Effect |                                      |                   |  |
|---------------------------|----------------------------------------------------------|--------------------------------------|-------------------|--|
| Scenario                  | Schools                                                  | Residential Healthcare<br>Facilities | Places of Worship |  |
| 2025 Proposed (+1 dB(A))  | 10                                                       | 4                                    | 5                 |  |
| 2025 Permitted (+1 dB(A)) | 10                                                       | 4                                    | 6                 |  |

#### Table 10: Schools, residential healthcare facilities and places of worship in 2025 Lden contours

The increases for the individual non residential receptors are all less than 3 dB(A) and would not be rated as significant.

## 4.3.2 2025 Lnight – Predicted Levels 1 dB(A) Higher

Figure 03 shows  $L_{night}$  noise contours for the 2025 Proposed (+1 dB(A)) Scenario and Figure 04 the corresponding contours for the 2025 Permitted (+1 dB(A)) Scenario.

For the 2025 scenarios  $L_{night}$  contours, the number of dwellings and the estimated population that they contain have been determined. This has been done based on the existing dwellings and population excluding consented developments, and also based on the existing dwellings and population allowing for consented developments and land zoned for residential

development. The results for the Permitted (+1 dB(A)) Scenario are given by contour in Table 11 along with the areas of the contours. The results for the Proposed (+1 dB(A)) Scenario are given by contour in Table 12 along with the areas of the contours.

| Scenario                                                   |           |                                  | 2025 Permitted (+1 dB(A)) |                  |                   |
|------------------------------------------------------------|-----------|----------------------------------|---------------------------|------------------|-------------------|
| Contour<br>L <sub>night</sub> (dB) Area (km <sup>2</sup> ) | A rea (1  | Excluding Consented Developments |                           | Including Conser | nted Developments |
|                                                            | Dwellings | Population.                      | Dwellings                 | Population       |                   |
| 40                                                         | 295.6     | 67,905                           | 206,497                   | 79,673           | 244,093           |
| 45                                                         | 113.1     | 14,943                           | 44,499                    | 21,999           | 66,058            |
| 50                                                         | 45.4      | 4,411                            | 14,063                    | 8,626            | 27,414            |
| 55                                                         | 15.6      | 348                              | 796                       | 509              | 1,402             |
| 60                                                         | 5.0       | 49                               | 127                       | 49               | 127               |
| 65                                                         | 1.6       | 2                                | 6                         | 2                | 6                 |

| Table 11: Areas, number of dwellings and population in 2025 Permitted | L <sub>night</sub> contours |
|-----------------------------------------------------------------------|-----------------------------|
|-----------------------------------------------------------------------|-----------------------------|

| Scenario                           |                         | 2025 Proposed (+1 dB(A))         |             |                 |                   |
|------------------------------------|-------------------------|----------------------------------|-------------|-----------------|-------------------|
| Contour L <sub>night</sub><br>(dB) | A                       | Excluding Consented Developments |             | Including Conse | nted Developments |
|                                    | Area (km <sup>2</sup> ) | Dwellings                        | Population. | Dwellings       | Population        |
| 40                                 | 400.8                   | 70,590                           | 209,083     | 80,508          | 239,571           |
| 45                                 | 171.0                   | 20,490                           | 61,419      | 27,855          | 84,011            |
| 50                                 | 71.3                    | 4,015                            | 11,494      | 9,999           | 30,090            |
| 55                                 | 26.6                    | 735                              | 2,105       | 2,332           | 7,084             |
| 60                                 | 8.6                     | 38                               | 117         | 38              | 117               |
| 65                                 | 2.9                     | 2                                | 6           | 2               | 6                 |

#### Table 12: Areas, number of dwellings and population in 2025 Proposed Lnight contours

The 2025 Proposed (+1 dB(A)) Scenario is compared with the 2025 Permitted (+1 dB(A)) Scenario in Table 13. The table includes all people in existing residential receptors who are exposed to at least 40 dB  $L_{night}$  in at least one of the scenarios. People who are exposed to negligible absolute noise levels in both scenarios are assessed as not being subject to significant effects and so have not been included.

| Magnitude of effect | No. people with Beneficial Effect | No. people with Adverse Effect |
|---------------------|-----------------------------------|--------------------------------|
| Imperceptible       | 29,138                            | 75,189                         |
| Not Significant     | 13,069                            | 31,070                         |
| Slight              | 59,720                            | 28,155                         |
| Moderate            | 3,671                             | 8,354                          |
| Significant         | 9,086                             | 11,526                         |
| Very Significant    | 77                                | 852                            |
| Profound            | 0                                 | 197                            |

#### Table 13: Air Noise (L<sub>night</sub>) People by Magnitude of effect – 2025 Proposed vs 2025 Permitted

In addition to the consideration of residential properties, other potential receptors of high sensitivity are included in the EIAR assessment, specifically schools, residential healthcare facilities and places of worship. Of these, only residential healthcare facilities are highly sensitive to noise at night. The numbers of each of these above the thresholds given in the EIAR for the 2025 Proposed (+1 dB(A)) Scenario are given in Table 14, where they are compared with the numbers for the 2025 Permitted (+1 dB(A)) Scenario.

| Scenario                  | No. Residential Healthcare Facilities Above Threshold for<br>Medium Absolute Effect |
|---------------------------|-------------------------------------------------------------------------------------|
| 2025 Proposed (+1 dB(A))  | 6                                                                                   |
| 2025 Permitted (+1 dB(A)) | 3                                                                                   |

#### Table 14: Schools, residential healthcare facilities and places of worship in 2025 Lnight contours

For 3 of these residential healthcare facilities in the 2025 Proposed (+1 dB(A)), the increases for the individual receptors are greater than 3 dB(A) and would be rated as significant.

#### 4.3.3 2025 Lden – Predicted Levels 1 dB(A) Lower

Figure 05 shows L<sub>den</sub> noise contours for the 2025 Proposed (-1 dB(A)) Scenario and Figure 06 the corresponding contours for the 2025 Permitted (-1 dB(A)) Scenario.

For the 2025 scenarios L<sub>den</sub> contours, the number of dwellings and the estimated population that they contain have been determined. This has been done based on the existing dwellings and population excluding consented developments, and also based on the existing dwellings and population allowing for consented developments and land zoned for residential development. The results for the Permitted (-1 dB(A)) Scenario are given by contour in Table 15 along with the areas of the contours. The results for the Proposed (-1 dB(A)) Scenario are given by contour in Table 16 along with the areas of the contours.

| Scenario                 |                            | 2025 Permitted (-1 dB(A))        |             |                    |                |
|--------------------------|----------------------------|----------------------------------|-------------|--------------------|----------------|
| Contour L <sub>den</sub> | A rea (lune <sup>2</sup> ) | Excluding Consented Developments |             | Including Consente | d Developments |
|                          | Area (km²)                 | Dwellings                        | Population. | Dwellings          | Population     |
| 45                       | 447.8                      | 93,847                           | 281,034     | 105,495            | 317,496        |
| 50                       | 184.6                      | 23,347                           | 69,768      | 30,806             | 92,670         |
| 55                       | 75.3                       | 5,075                            | 15,382      | 11,036             | 33,905         |
| 60                       | 26.9                       | 532                              | 1,633       | 1,999              | 6,244          |
| 65                       | 8.6                        | 36                               | 108         | 36                 | 108            |
| 70                       | 2.9                        | 2                                | 6           | 2                  | 6              |

#### Table 15: Areas, number of dwellings and population in 2025 Permitted L<sub>den</sub> contours

| Scenario                 |                         | 2025 Proposed (-1 dB(A))         |             |                 |                    |
|--------------------------|-------------------------|----------------------------------|-------------|-----------------|--------------------|
| Contour L <sub>den</sub> | A                       | Excluding Consented Developments |             | Including Conse | ented Developments |
|                          | Area (km <sup>2</sup> ) | Dwellings                        | Population. | Dwellings       | Population         |
| 45                       | 522.5                   | 90,373                           | 264,529     | 100,619         | 295,963            |
| 50                       | 207.0                   | 27,615                           | 82,847      | 35,587          | 107,407            |
| 55                       | 83.9                    | 5,390                            | 15,662      | 11,263          | 33,621             |
| 60                       | 32.6                    | 1,062                            | 2,946       | 2,859           | 8,525              |
| 65                       | 10.6                    | 66                               | 197         | 66              | 197                |
| 70                       | 3.7                     | 5                                | 16          | 5               | 16                 |

#### Table 16: Areas, number of dwellings and population in 2025 Proposed L<sub>den</sub> contours

The 2025 Proposed (-1 dB(A)) Scenario is compared with the 2025 Permitted (-1 dB(A)) Scenario in Table 17. The table includes all people in existing residential receptors who are exposed to at least 45 dB L<sub>den</sub> in at least one of the scenarios. People who are exposed to negligible absolute noise levels in both scenarios are assessed as not being subject to significant effects and so have not been included.

| Magnitude of effect | No. people with Beneficial Effect | No. people with Adverse Effect |
|---------------------|-----------------------------------|--------------------------------|
| Imperceptible       | 36,595                            | 178,243                        |
| Not Significant     | 46,758                            | 22,117                         |
| Slight              | 7,780                             | 10,745                         |
| Moderate            | 5,777                             | 2,621                          |
| Significant         | 4,374                             | 113                            |
| Very Significant    | 0                                 | 0                              |
| Profound            | 0                                 | 0                              |

Table 17: Air Noise (Lden) People by Magnitude of effect – 2025 Proposed vs 2025 Permitted

In addition to the consideration of residential properties, other potential receptors of high sensitivity are included in the EIAR assessment, specifically schools, residential healthcare facilities and places of worship. The numbers of each of these above the thresholds given in the EIAR for the 2025 Proposed (-1 dB(A)) Scenario are given in Table 18, where they are compared with the numbers for the 2025 Permitted (-1 dB(A)) Scenario.

|                           | No. Receptors Above Threshold for Medium Absolute Effect |                                      |                   |  |  |
|---------------------------|----------------------------------------------------------|--------------------------------------|-------------------|--|--|
| Scenario                  | Schools                                                  | Residential Healthcare<br>Facilities | Places of Worship |  |  |
| 2025 Proposed (+1 dB(A))  | 8                                                        | 4                                    | 4                 |  |  |
| 2025 Permitted (+1 dB(A)) | 9                                                        | 4                                    | 4                 |  |  |

Table 18: Schools, residential healthcare facilities and places of worship in 2025 Lden contours

The increases for the individual non residential receptors are all less than 3 dB(A) and would not be rated as significant.

## 4.3.4 2025 Lnight – Predicted Levels 1 dB(A) Lower

Figure 07 shows  $L_{night}$  noise contours for the 2025 Proposed (-1 dB(A)) Scenario and Figure 08 the corresponding contours for the 2025 Permitted (-1 dB(A)) Scenario.

For the 2025 scenarios L<sub>night</sub> contours, the number of dwellings and the estimated population that they contain have been determined. This has been done based on the existing dwellings and population excluding consented developments, and also based on the existing dwellings and population allowing for consented developments and land zoned for residential development. The results for the Permitted (-1 dB(A)) Scenario are given by contour in Table 19 along with the areas of the contours. The results for the Proposed (-1 dB(A)) Scenario are given by contour in Table 20 along with the areas of the contours.

| Scenario                           |            | 2025 Permitted (-1 dB(A))        |             |                 |                    |
|------------------------------------|------------|----------------------------------|-------------|-----------------|--------------------|
| Contour L <sub>night</sub><br>(dB) | Area (km²) | Excluding Consented Developments |             | Including Conse | ented Developments |
|                                    | Area (km²) | Dwellings                        | Population. | Dwellings       | Population         |
| 40                                 | 193.4      | 41,141                           | 125,758     | 49,392          | 151,168            |
| 45                                 | 80.7       | 7,822                            | 24,050      | 14,030          | 43,270             |
| 50                                 | 30.4       | 1,881                            | 6,047       | 5,474           | 17,542             |
| 55                                 | 9.9        | 95                               | 253         | 95              | 253                |
| 60                                 | 3.1        | 6                                | 19          | 6               | 19                 |
| 65                                 | 1.1        | 0                                | 0           | 0               | 0                  |



| Scenario                           |                           | 2025 Proposed (-1 dB(A))         |             |                 |                   |
|------------------------------------|---------------------------|----------------------------------|-------------|-----------------|-------------------|
| Contour L <sub>night</sub><br>(dB) | A rea (lum <sup>2</sup> ) | Excluding Consented Developments |             | Including Conse | nted Developments |
|                                    | Area (km²)                | Dwellings                        | Population. | Dwellings       | Population        |
| 40                                 | 282.4                     | 44,310                           | 132,952     | 53,255          | 160,556           |
| 45                                 | 122.3                     | 11,221                           | 33,075      | 18,222          | 54,499            |
| 50                                 | 49.1                      | 2,293                            | 6,308       | 5,976           | 17,538            |
| 55                                 | 16.5                      | 347                              | 1,126       | 903             | 2,917             |
| 60                                 | 5.5                       | 13                               | 41          | 13              | 41                |
| 65                                 | 1.9                       | 0                                | 0           | 0               | 0                 |

Table 20: Areas, number of dwellings and population in 2025 Proposed Lnight contours

The 2025 Proposed (-1 dB(A)) Scenario is compared with the 2025 Permitted (-1 dB(A)) Scenario in Table 21. The table includes all people in existing residential receptors who are exposed to at least 40 dB  $L_{night}$  in at least one of the scenarios. People who are exposed to negligible absolute noise levels in both scenarios are assessed as not being subject to significant effects and so have not been included.

| Magnitude of effect | No. people with Beneficial Effect | No. people with Adverse Effect |
|---------------------|-----------------------------------|--------------------------------|
| Imperceptible       | 22,239                            | 47,303                         |
| Not Significant     | 6,100                             | 14,464                         |
| Slight              | 32,084                            | 24,992                         |
| Moderate            | 6,397                             | 7,965                          |
| Significant         | 3,843                             | 7,243                          |
| Very Significant    | 3                                 | 448                            |
| Profound            | 0                                 | 116                            |

#### Table 21: Air Noise (L<sub>night</sub>) People by Magnitude of effect – 2025 Proposed vs 2025 Permitted

In addition to the consideration of residential properties, other potential receptors of high sensitivity are included in the EIAR assessment, specifically schools, residential healthcare facilities and places of worship. Of these, only residential healthcare facilities are highly sensitive to noise at night. The numbers of each of these above the thresholds given in the EIAR for the 2025 Proposed (-1 dB(A)) Scenario are given in Table 22, where they are compared with the numbers for the 2025 Permitted (-1 dB(A)) Scenario.

| Scenario                  | No. Residential Healthcare Facilities Above Threshold for<br>Medium Absolute Effect |
|---------------------------|-------------------------------------------------------------------------------------|
| 2025 Proposed (-1 dB(A))  | 4                                                                                   |
| 2025 Permitted (-1 dB(A)) | 2                                                                                   |

#### Table 22: Schools, residential healthcare facilities and places of worship in 2025 Lnight contours

For 3 of these residential healthcare facilities in the 2025 Proposed (-1 dB(A)), the increases for the individual receptors are greater than 3 dB(A) and would be rated as significant.

## 4.3.5 2035 L<sub>den</sub> – Predicted Levels 1 dB(A) Higher

Figure 09 shows  $L_{den}$  noise contours for the 2035 Proposed (+1 dB(A)) Scenario and Figure 10 the corresponding contours for the 2035 Permitted (+1 dB(A)) Scenario.

For the 2035 scenarios  $L_{den}$  contours, the number of dwellings and the estimated population that they contain have been determined. This has been done based on the existing dwellings and population excluding consented developments, and also based on the existing dwellings and population allowing for consented developments and land zoned for residential development. The results for the Permitted (+1 dB(A)) Scenario are given by contour in Table 23 along with the areas of the contours. The results for the Proposed (+1 dB(A)) Scenario are given by contour in Table 24 along with the areas of the contours.

| Scenario                 |                         | 2035 Permitted (+1 dB(A))        |             |                                  |            |
|--------------------------|-------------------------|----------------------------------|-------------|----------------------------------|------------|
|                          | $\Delta rop (l/m^2)$    | Excluding Consented Developments |             | Including Consented Developments |            |
| Contour L <sub>den</sub> | Area (km <sup>2</sup> ) | Dwellings                        | Population. | Dwellings                        | Population |
| 45                       | 431.9                   | 80,706                           | 241,551     | 90,708                           | 272,297    |
| 50                       | 180.6                   | 21,095                           | 63,358      | 28,423                           | 85,876     |
| 55                       | 78.2                    | 5,278                            | 15,840      | 11,311                           | 34,580     |
| 60                       | 29.1                    | 827                              | 2,329       | 2,524                            | 7,608      |
| 65                       | 9.3                     | 39                               | 119         | 39                               | 119        |
| 70                       | 3.0                     | 2                                | 6           | 2                                | 6          |

Table 23: Areas, number of dwellings and population in 2035 Permitted Lden contours

| Scenario                 |            | 2035 Proposed (+1 dB(A))         |             |                 |                   |
|--------------------------|------------|----------------------------------|-------------|-----------------|-------------------|
|                          | A          | Excluding Consented Developments |             | Including Conse | nted Developments |
| Contour L <sub>den</sub> | Area (km²) | Dwellings                        | Population. | Dwellings       | Population        |
| 45                       | 582.9      | 92,271                           | 269,635     | 102,586         | 301,250           |
| 50                       | 222.3      | 28,392                           | 84,940      | 36,387          | 109,576           |
| 55                       | 93.5       | 6,079                            | 17,742      | 12,709          | 38,059            |
| 60                       | 36.8       | 1,523                            | 4,142       | 3,449           | 10,086            |
| 65                       | 12.0       | 76                               | 228         | 76              | 228               |
| 70                       | 4.1        | 6                                | 19          | 6               | 19                |

Table 24: Areas, number of dwellings and population in 2035 Proposed L<sub>den</sub> contours

The 2025 Proposed (+1 dB(A)) Scenario is compared with the 2035 Permitted (+1 dB(A)) Scenario in Table 25. The table includes all people in existing residential receptors who are exposed to at least 45 dB  $L_{den}$  in at least one of the scenarios. People who are exposed to negligible absolute noise levels in both scenarios are assessed as not being subject to significant effects and so have not been included.

| Magnitude of effect | No. people with Beneficial Effect | No. people with Adverse Effect |
|---------------------|-----------------------------------|--------------------------------|
| Imperceptible       | 30,958                            | 166,496                        |
| Not Significant     | 11,791                            | 52,721                         |
| Slight              | 4,743                             | 25,072                         |
| Moderate            | 5,173                             | 2,733                          |
| Significant         | 110                               | 125                            |
| Very Significant    | 0                                 | 0                              |
| Profound            | 0                                 | 0                              |

#### Table 25: Air Noise (L<sub>den</sub>) People by Magnitude of effect – 2035 Proposed vs 2035 Permitted

In addition to the consideration of residential properties, other potential receptors of high sensitivity are included in the EIAR assessment, specifically schools, residential healthcare facilities and places of worship. The numbers of each of these above the thresholds given in the EIAR for the 2035 Proposed (+1 dB(A)) Scenario are given in Table 26, where they are compared with the numbers for the 2035 Permitted (+1 dB(A)) Scenario.

#### No. Receptors Above Threshold for Medium Absolute Effect

| Scenario                  | Schools | Residential Healthcare<br>Facilities | Places of Worship |
|---------------------------|---------|--------------------------------------|-------------------|
| 2035 Proposed (+1 dB(A))  | 8       | 4                                    | 4                 |
| 2035 Permitted (+1 dB(A)) | 9       | 4                                    | 5                 |

#### Table 26: Schools, residential healthcare facilities and places of worship in 2035 Lden contours

The increases for the individual non residential receptors are all less than 3 dB(A) and would not be rated as significant.

#### 4.3.6 2035 Lnight – Predicted Levels 1 dB(A) Higher

Figure 11 shows  $L_{night}$  noise contours for the 2035 Proposed (+1 dB(A)) Scenario and Figure 12 the corresponding contours for the 2035 Permitted (+1 dB(A)) Scenario.

For the 2035 scenarios L<sub>night</sub> contours, the number of dwellings and the estimated population that they contain have been determined. This has been done based on the existing dwellings and population excluding consented developments, and also based on the existing dwellings and population allowing for consented developments and land zoned for residential development. The results for the Permitted (+1 dB(A)) Scenario are given by contour in Table 27 along with the areas of the contours. The results for the Proposed (+1 dB(A)) Scenario are given by contour in Table 28 along with the areas of the contours.

| Scenario                   |                         |                                  | 2035 Permitted (+1 | dB(A))          |                    |
|----------------------------|-------------------------|----------------------------------|--------------------|-----------------|--------------------|
| Contour L <sub>night</sub> |                         | Excluding Consented Developments |                    | Including Conse | ented Developments |
| (dB)                       | Area (km <sup>2</sup> ) | Dwellings                        | Population.        | Dwellings       | Population         |
| 40                         | 168.5                   | 31,067                           | 94,093             | 39,015          | 118,516            |
| 45                         | 76.7                    | 7,339                            | 22,903             | 13,562          | 42,172             |
| 50                         | 30.3                    | 2,008                            | 5,968              | 5,630           | 17,528             |
| 55                         | 10.2                    | 100                              | 273                | 100             | 273                |
| 60                         | 3.2                     | 7                                | 22                 | 7               | 22                 |
| 65                         | 1.1                     | 0                                | 0                  | 0               | 0                  |

Table 27: Areas, number of dwellings and population in 2035 Permitted Lnight contours

| Scenario 2035 Proposed (+1 dB(A)) |                         |                                  |             |                 |                   |
|-----------------------------------|-------------------------|----------------------------------|-------------|-----------------|-------------------|
| Contour L <sub>night</sub>        | Area (km <sup>2</sup> ) | Excluding Consented Developments |             | Including Conse | nted Developments |
| (dB)                              | Area (km <sup>-</sup> ) | Dwellings                        | Population. | Dwellings       | Population        |
| 40                                | 317.0                   | 49,318                           | 147,259     | 58,686          | 176,075           |
| 45                                | 137.6                   | 13,595                           | 40,260      | 20,609          | 61,730            |
| 50                                | 57.3                    | 3,081                            | 8,672       | 8,042           | 24,024            |
| 55                                | 19.9                    | 455                              | 1,432       | 2,022           | 6,343             |
| 60                                | 6.5                     | 18                               | 56          | 18              | 56                |
| 65                                | 2.2                     | 0                                | 0           | 0               | 0                 |

Table 28: Areas, number of dwellings and population in 2035 Proposed L<sub>night</sub> contours

The 2035 Proposed (+1 dB(A)) Scenario is compared with the 2035 Permitted (+1 dB(A)) Scenario in Table 29. The table includes all people in existing residential receptors who are exposed to at least 40 dB  $L_{night}$  in at least one of the scenarios. People who are exposed to negligible absolute noise levels in both scenarios are assessed as not being subject to significant effects and so have not been included.

| Magnitude of effect | No. people with Beneficial Effect | No. people with Adverse Effect |
|---------------------|-----------------------------------|--------------------------------|
| Imperceptible       | 6,456                             | 17,822                         |
| Not Significant     | 13,920                            | 46,287                         |
| Slight              | 4,365                             | 33,774                         |
| Moderate            | 6,681                             | 23,183                         |
| Significant         | 205                               | 10,833                         |
| Very Significant    | 3                                 | 515                            |
| Profound            | 0                                 | 156                            |

#### Table 29: Air Noise (L<sub>night</sub>) People by Magnitude of effect – 2035 Proposed vs 2035 Permitted

In addition to the consideration of residential properties, other potential receptors of high sensitivity are included in the EIAR assessment, specifically schools, residential healthcare facilities and places of worship. Of these, only residential healthcare facilities are highly sensitive to noise at night. The numbers of each of these above the thresholds given in the EIAR for the 2035 Proposed (+1 dB(A)) Scenario are given in Table 30, where they are compared with the numbers for the 2035 Permitted (+1 dB(A)) Scenario.

| Scenario                  | No. Residential Healthcare Facilities Above Threshold for<br>Medium Absolute Effect |
|---------------------------|-------------------------------------------------------------------------------------|
| 2035 Proposed (+1 dB(A))  | 4                                                                                   |
| 2035 Permitted (+1 dB(A)) | 2                                                                                   |

#### Table 30: Schools, residential healthcare facilities and places of worship in 2035 Lnight contours

For 3 of these residential healthcare facilities in the 2025 Proposed (+1 dB(A)), the increases for the individual receptors are greater than 3 dB(A) and would be rated as significant.

## 4.3.7 2035 Lden – Predicted Levels 1 dB(A) Lower

Figure 13 shows L<sub>den</sub> noise contours for the 2035 Proposed (-1 dB(A)) Scenario and Figure 14 the corresponding contours for the 2035 Permitted (-1 dB(A)) Scenario.

For the 2035 scenarios L<sub>den</sub> contours, the number of dwellings and the estimated population that they contain have been determined. This has been done based on the existing dwellings and population excluding consented developments, and also based on the existing dwellings and population allowing for consented developments and land zoned for residential development. The results for the Permitted (-1 dB(A)) Scenario are given by contour in Table 31 along with the areas of the contours. The results for the Proposed (-1 dB(A)) Scenario are given by contour in Table 32 along with the areas of the contours.

| Scenario                 |                                | 2035 Permitted (-1 dB(A))        |             |                 |                   |
|--------------------------|--------------------------------|----------------------------------|-------------|-----------------|-------------------|
|                          | ur L <sub>den</sub> Area (km²) | Excluding Consented Developments |             | Including Conse | nted Developments |
| Contour L <sub>den</sub> |                                | Dwellings                        | Population. | Dwellings       | Population        |
| 45                       | 302.2                          | 47,668                           | 143,324     | 56,715          | 171,279           |
| 50                       | 130.1                          | 12,727                           | 37,968      | 19,741          | 59,438            |
| 55                       | 53.2                           | 2,662                            | 7,474       | 7,636           | 23,009            |
| 60                       | 18.2                           | 370                              | 1,189       | 1,026           | 3,280             |
| 65                       | 5.9                            | 17                               | 54          | 17              | 54                |
| 70                       | 2.0                            | 0                                | 0           | 0               | 0                 |

Table 31: Areas, number of dwellings and population in 2035 Permitted Lden contours

| Scenario                 |            | 2035 Proposed (-1 dB(A))         |             |                 |                   |
|--------------------------|------------|----------------------------------|-------------|-----------------|-------------------|
|                          | A          | Excluding Consented Developments |             | Including Conse | nted Developments |
| Contour L <sub>den</sub> | Area (km²) | Dwellings                        | Population. | Dwellings       | Population        |
| 45                       | 375.0      | 59,490                           | 176,393     | 69,109          | 205,974           |
| 50                       | 158.0      | 16,833                           | 49,577      | 23,937          | 71,302            |
| 55                       | 64.7       | 3,575                            | 10,086      | 8,259           | 24,350            |
| 60                       | 23.6       | 571                              | 1,716       | 2,168           | 6,695             |
| 65                       | 7.9        | 33                               | 101         | 33              | 101               |
| 70                       | 2.7        | 0                                | 0           | 0               | 0                 |

Table 32: Areas, number of dwellings and population in 2035 Proposed L<sub>den</sub> contours

The 2035 Proposed (-1 dB(A)) Scenario is compared with the 2035 Permitted (-1 dB(A)) Scenario in Table 33. The table includes all people in existing residential receptors who are exposed to at least 45 dB  $L_{den}$  in at least one of the scenarios. People who are exposed to negligible absolute noise levels in both scenarios are assessed as not being subject to significant effects and so have not been included.

| Magnitude of effect | No. people with Beneficial Effect | No. people with Adverse Effect |
|---------------------|-----------------------------------|--------------------------------|
| Imperceptible       | 5,618                             | 111,914                        |
| Not Significant     | 5,205                             | 33,253                         |
| Slight              | 6,343                             | 16,197                         |
| Moderate            | 2,490                             | 1,110                          |
| Significant         | 87                                | 53                             |
| Very Significant    | 0                                 | 0                              |
| Profound            | 0                                 | 0                              |

#### Table 33: Air Noise (L<sub>den</sub>) People by Magnitude of effect – 2035 Proposed vs 2035 Permitted

In addition to the consideration of residential properties, other potential receptors of high sensitivity are included in the EIAR assessment, specifically schools, residential healthcare facilities and places of worship. The numbers of each of these above the thresholds given in the EIAR for the 2035 Proposed (-1 dB(A)) Scenario are given in Table 34, where they are compared with the numbers for the 2035 Permitted (-1 dB(A)) Scenario.

#### No. Receptors Above Threshold for Medium Absolute Effect

| Scenario                  | Schools | Residential Healthcare<br>Facilities | Places of Worship |
|---------------------------|---------|--------------------------------------|-------------------|
| 2025 Proposed (+1 dB(A))  | 8       | 3                                    | 3                 |
| 2025 Permitted (+1 dB(A)) | 6       | 3                                    | 2                 |

#### Table 34: Schools, residential healthcare facilities and places of worship in 2035 Lden contours

The increases for the individual non residential receptors are all less than 3 dB(A) and would not be rated as significant.

#### 4.3.8 2035 Lnight – Predicted Levels 1 dB(A) Lower

Figure 15 shows  $L_{night}$  noise contours for the 2035 Proposed (-1 dB(A)) Scenario and Figure 16 the corresponding contours for the 2035 Permitted (-1 dB(A)) Scenario.

For the 2035 scenarios L<sub>night</sub> contours, the number of dwellings and the estimated population that they contain have been determined. This has been done based on the existing dwellings and population excluding consented developments, and also based on the existing dwellings and population allowing for consented developments and land zoned for residential development. The results for the Permitted (-1 dB(A)) Scenario are given by contour in Table 35 along with the areas of the contours. The results for the Proposed (-1 dB(A)) Scenario are given by contour in Table 36 along with the areas of the contours.

| Scenario                                                | D         | 2035 Permitted (-1 dB(A)) |                    |                 |                                  |  |
|---------------------------------------------------------|-----------|---------------------------|--------------------|-----------------|----------------------------------|--|
| Contour (dD)                                            | A         | Excluding Conse           | ented Developments | Including Conse | Including Consented Developments |  |
| Contour L <sub>night</sub> (dB) Area (km <sup>2</sup> ) | Dwellings | Population.               | Dwellings          | Population      |                                  |  |
| 40                                                      | 123.3     | 15,543                    | 46,806             | 22,554          | 68,242                           |  |
| 45                                                      | 53.0      | 5,341                     | 16,809             | 10,744          | 33,645                           |  |
| 50                                                      | 19.9      | 778                       | 2,266              | 3,590           | 11,323                           |  |
| 55                                                      | 6.5       | 65                        | 172                | 65              | 172                              |  |
| 60                                                      | 2.0       | 2                         | 6                  | 2               | 6                                |  |
| 65                                                      | 0.8       | 0                         | 0                  | 0               | 0                                |  |

Table 35: Areas, number of dwellings and population in 2035 Permitted L<sub>night</sub> contours

| Scenario                                    |            | 2035 Proposed (-1 dB(A)) |                    |                 |                   |  |
|---------------------------------------------|------------|--------------------------|--------------------|-----------------|-------------------|--|
| Contour L <sub>night</sub> Area (km<br>(dB) | A rea (1   | Excluding Conse          | ented Developments | Including Conse | nted Developments |  |
|                                             | Area (km²) | Dwellings                | Population.        | Dwellings       | Population        |  |
| 40                                          | 226.8      | 29,934                   | 89,223             | 37,875          | 113,623           |  |
| 45                                          | 99.3       | 6,952                    | 20,721             | 13,731          | 41,529            |  |
| 50                                          | 39.0       | 1,803                    | 4,784              | 4,289           | 12,492            |  |
| 55                                          | 12.7       | 113                      | 362                | 113             | 362               |  |
| 60                                          | 4.2        | 8                        | 25                 | 8               | 25                |  |
| 65                                          | 1.5        | 0                        | 0                  | 0               | 0                 |  |

Table 36: Areas, number of dwellings and population in 2035 Proposed L<sub>night</sub> contours

The 2035 Proposed (-1 dB(A)) Scenario is compared with the 2035 Permitted (-1 dB(A)) Scenario in Table 37. The table includes all people in existing residential receptors who are exposed to at least 40 dB  $L_{night}$  in at least one of the scenarios. People who are exposed to negligible absolute noise levels in both scenarios are assessed as not being subject to significant effects and so have not been included.

| Magnitude of effect | No. people with Beneficial Effect | No. people with Adverse Effect |
|---------------------|-----------------------------------|--------------------------------|
| Imperceptible       | 1,641                             | 8,396                          |
| Not Significant     | 1,485                             | 35,913                         |
| Slight              | 7,056                             | 12,092                         |
| Moderate            | 3,936                             | 13,105                         |
| Significant         | 170                               | 8,044                          |
| Very Significant    | 0                                 | 252                            |
| Profound            | 0                                 | 100                            |

#### Table 37: Air Noise (L<sub>night</sub>) People by Magnitude of effect – 2035 Proposed vs 2035 Permitted

In addition to the consideration of residential properties, other potential receptors of high sensitivity are included in the EIAR assessment, specifically schools, residential healthcare facilities and places of worship. Of these, only residential healthcare facilities are highly sensitive to noise at night. The numbers of each of these above the thresholds given in the EIAR for the 2035 Proposed (-1 dB(A)) Scenario are given in Table 38, where they are compared with the numbers for the 2035 Permitted (-1 dB(A)) Scenario.

| Scenario                  | No. Residential Healthcare Facilities Above Threshold for<br>Medium Absolute Effect |
|---------------------------|-------------------------------------------------------------------------------------|
| 2025 Proposed (-1 dB(A))  | 4                                                                                   |
| 2025 Permitted (-1 dB(A)) | 1                                                                                   |

#### Table 38: Schools, residential healthcare facilities and places of worship in 2035 Lnight contours

For 3 of these residential healthcare facilities in the 2035 Proposed (-1 dB(A)), the increases for the individual receptors are greater than 3 dB(A) and would be rated as significant.

## 4.4 Discussion

Compared to the exposures detailed in replacement Chapter 13 of the EIAR Supplement, those for the corresponding Permitted and Proposed scenarios where the noise is 1 dB(A) higher are consequently higher, and those for the corresponding Permitted and Proposed scenarios where the noise is 1 dB(A) lower are consequently lower.

In terms of significance for residential receptors the situation using the L<sub>den</sub> metric is summarised in Table 39. This details the total number of people experiencing significant effects, either beneficial or adverse. In each of 2025 and 2035, although the absolute numbers vary, the relationship between those with beneficial and adverse effect is generally consistent under each of the scenarios.

| Year / Scenario          | No. of People with Significant Effect (L <sub>den</sub> ) |         |  |
|--------------------------|-----------------------------------------------------------|---------|--|
| rear / Scenario          | Beneficial                                                | Adverse |  |
| 2025 Proposed            | 7,060                                                     | 119     |  |
| 2025 Proposed (+1 dB(A)) | 8,487                                                     | 186     |  |
| 2025 Proposed (-1 dB(A)) | 4,374                                                     | 113     |  |
| 2035 Proposed            | 104                                                       | 104     |  |
| 2035 Proposed (+1 dB(A)) | 110                                                       | 125     |  |
| 2035 Proposed (-1 dB(A)) | 87                                                        | 53      |  |

#### Table 39: Significant Effects by Scenario (L<sub>den</sub>)

In terms of significance for residential receptors the situation using the  $L_{night}$  metric is summarised in Table 40. This details the total number of people experiencing significant effects, either beneficial or adverse. In each of 2025 and 2035, although the absolute numbers vary, the relationship between those with beneficial and adverse effect is consistent under each of the scenarios.

| Veen / Seenerie          | No. of People with Significant Effect (L <sub>night</sub> ) |         |  |
|--------------------------|-------------------------------------------------------------|---------|--|
| Year / Scenario          | Beneficial                                                  | Adverse |  |
| 2025 Proposed            | 6,424                                                       | 10,109  |  |
| 2025 Proposed (+1 dB(A)) | 9,163                                                       | 12,575  |  |
| 2025 Proposed (-1 dB(A)) | 3,846                                                       | 7,807   |  |
| 2035 Proposed            | 185                                                         | 9,456   |  |
| 2035 Proposed (+1 dB(A)) | 208                                                         | 11,504  |  |
| 2035 Proposed (-1 dB(A)) | 170                                                         | 8,396   |  |

#### Table 40: Significant Effects by Scenario (Lnight)

When is comes to non residential receptors, the findings for the additional scenarios are consistent with those in the EIAR, which changes that would not be rated as significant when considering  $L_{den}$  metric, but increases for 3 properties that would be rated as significant when considering the  $L_{night}$  metric.

#### 5.0 ISSUE 3 – BASELINE YEARS

#### 5.1 ABP Request and Clarification

The request from ABP was as follows:

... it is presumed the annual and 92 day summer period numbers of ATMs were lower prior to 2018.

Consequently, you are requested to comment on why:

a) the baseline figures for 2019 were not used for the purposes of analysis.

*b)* When prior to 2018 were the annual and 92 day summer period numbers of ATMs last more than 25% below those in 2018, and

c) If the numbers of ATMs were last more than 25% below those in 2018 after the Northern runway came into use, what would be the difference in terms of the number of dwellings and persons likely to experience an increase in Lnight to over 50 dBA and 55 dBA compared to the numbers presented in the EIAR.

daa sought clarification on this and in their letter of 26 May 2023 ABP responded that:

Regarding the clarity on the 25% of ATMs on the North Runway, request 3 (c) (i) has been rephrased as follows:

I. Assuming the fleet mix stays the same but the assumed numbers of ATMs at night are 25% below those in 2018, what would be the difference in terms of the a) number of dwellings and b) persons likely to experience an increase in  $L_{night}$  to over 50 dBA and 55 dBA compared to the numbers presented in the EIAR.

## 5.2 Response a) 2019 Baseline Figures Not Used for Purposes of Analysis

When undertaking environmental assessment, the approach is to set out the current situation and then to consider what may happen in the future with or without the change being sought. This allows changes that are going to happen irrespective of the change being sought to be accounted for. Information on the current and past situations is included to provide context but is not part of the analysis. Information on past activity, both in 2018 and 2019 was included in the 2020 EIAR.

## 5.3 Response b) Movements last 25% below 2018

2014 was the last year in which the movements at night were at least 25% below those in 2018. This is detailed in Table 41 below which includes historic movements for the annual period and the 92 day summer period.

| Veer / Seenerie | Night Movements |        |  |
|-----------------|-----------------|--------|--|
| Year / Scenario | Annual          | Summer |  |
| 2018            | 27,896          | 8,755  |  |
| 2018 minus 25%  | 20,922          | 6,566  |  |
| 2017            | 27,287          | 8,689  |  |
| 2016            | 24,753          | 7,800  |  |
| 2015            | 22,546          | 7,073  |  |
| 2014            | 19,576          | 6,253  |  |

**Table 41: Past Night Movements** 

## 5.4 Response c)

To determine the number of dwellings and persons likely to experience an increase in noise at night, the number exposed under the scenarios of interest has first been determined. These are the Permitted Scenario, the Proposed Scenario, and Proposed Reduced Scenario. The latter is based on the Proposed Scenario but with the number of movements factored down so they are equal to 25% below the number in 2018, while keeping the fleet mix constant. This results in a similar number of movements to the Permitted Scenario but retains the use of the North Runway for part of the night.

For each of these scenarios the number of dwellings and the estimated population have been determined based on the existing dwellings and population excluding consented developments. This is so that the increases subsequently computed reflect the changes in noise, rather than introduction of new dwellings and associated population. The dwelling results are given by contour in Table 42 and the population results in Table 43.

The contour results are all cumulative, e.g. any dwellings inside a 55 dB contour are also included in the totals for any lower value contour.

|                                    | Dwellings Excluding Consented Developments |                  |                             |                   |                  |                             |
|------------------------------------|--------------------------------------------|------------------|-----------------------------|-------------------|------------------|-----------------------------|
| Contour L <sub>night</sub><br>(dB) | 2025<br>Permitted                          | 2025<br>Proposed | 2025<br>Proposed<br>Reduced | 2035<br>Permitted | 2035<br>Proposed | 2035<br>Proposed<br>Reduced |
| 40                                 | 52,493                                     | 56,532           | 31,206                      | 22,110            | 37,765           | 21,357                      |
| 45                                 | 10,424                                     | 15,630           | 6,725                       | 6,270             | 10,104           | 4,750                       |
| 50                                 | 3,138                                      | 3,113            | 1,592                       | 973               | 2,318            | 1,071                       |
| 55                                 | 115                                        | 466              | 78                          | 79                | 372              | 47                          |
| 60                                 | 17                                         | 26               | 6                           | 4                 | 13               | 3                           |
| 65                                 | 0                                          | 0                | 0                           | 0                 | 0                | 0                           |

Table 42: Exposed Dwellings at Night by Scenario and Contour

|                                    | Population Excluding Consented Developments |                  |                             |                   |                  |                             |  |
|------------------------------------|---------------------------------------------|------------------|-----------------------------|-------------------|------------------|-----------------------------|--|
| Contour L <sub>night</sub><br>(dB) | 2025<br>Permitted                           | 2025<br>Proposed | 2025<br>Proposed<br>Reduced | 2035<br>Permitted | 2035<br>Proposed | 2035<br>Proposed<br>Reduced |  |
| 40                                 | 160,430                                     | 168,472          | 92,902                      | 66,841            | 112,987          | 63,987                      |  |
| 45                                 | 31,419                                      | 46,331           | 19,969                      | 19,626            | 29,900           | 13,827                      |  |
| 50                                 | 9,972                                       | 8,766            | 4,152                       | 2,852             | 6,390            | 2,935                       |  |
| 55                                 | 315                                         | 1,463            | 233                         | 212               | 1,197            | 145                         |  |
| 60                                 | 48                                          | 80               | 19                          | 13                | 41               | 10                          |  |
| 65                                 | 0                                           | 0                | 0                           | 0                 | 0                | 0                           |  |

Table 43: Exposed Population at Night by Scenario and Contour

Considering the dwellings exposed to at least 50 dB  $L_{night}$  in 2025 the totals are similar for the Permitted and Proposed scenarios. This is despite the greater number of movements in the Proposed Scenario and is due to the differing distribution of dwellings in the areas overflown. Due to the reduced number of movements the total for the Proposed Reduced Scenario is lower. In terms of population the highest total is for the Permitted Scenario, with the lowest for the Proposed Reduced Scenario.

Considering the dwellings exposed to at least 55 dB  $L_{night}$  in 2025 the total is highest for the Proposed Scenario, in part due to the greater number of movements compared to the Permitted Scenario. Due to the reduced number of movements the total for the Proposed Reduced Scenario is the lowest. The population totals have the same pattern.

Considering the dwellings exposed to at least 50 dB  $L_{night}$  in 2035 the totals are similar for the Permitted and Proposed Reduced scenarios. This differs from the situation in 2025 and is due to contours being smaller in 2035 meaning they contain reduced areas which have different dwelling distributions. The population totals follow the same pattern.

Considering the dwellings exposed to at least 55 dB  $L_{night}$  in 2035 the total is highest for the Proposed Scenario, in part due to the greater number of movements compared to the Permitted Scenario. Due to the reduced number of movements the total for the Proposed Reduced Scenario is the lowest. The population totals follow the same pattern.

The number of dwellings and people forecast to experience an increase in their  $L_{night}$  level to over 50 dB(A) and over to over 55 dB(A) has been determined. This has been determined by comparing the exposures of the Permitted and Proposed scenarios in the latest EIAR update, and by comparing the exposures of the Permitted and Proposed Reduced scenarios. The additional night exposure is given in Table 44.

| Scenario                 | _        | s with Increase<br>to Over | Population with Increase in<br>L <sub>night</sub> to Over |          |  |
|--------------------------|----------|----------------------------|-----------------------------------------------------------|----------|--|
|                          | 50 dB(A) | 55 dB(A)                   | 50 dB(A)                                                  | 55 dB(A) |  |
| 2025 Proposed            | 1,692    | 387                        | 4,895                                                     | 1,245    |  |
| 2025 Proposed<br>Reduced | 387      | 46                         | 1,139                                                     | 134      |  |
| 2035 Proposed            | 1,511    | 567                        | 4,128                                                     | 1,398    |  |
| 2035 Proposed<br>Reduced | 324      | 29                         | 1,064                                                     | 88       |  |

#### Table 44: Additional Night Exposure Compared to Permitted Scenario

The results show that there are dwellings and populations whose exposure increases in both years under either the Proposed Scenario or the Proposed Reduced Scenario although the numbers are smaller in the case of the latter.

A point to note is that there is a difference in the distribution of the noise at night between the Permitted Scenario and the Proposed and Proposed Reduced scenarios. Under the Permitted Scenario departures to west use the South Runway at night but many of these relocate to the North Runway in the Proposed and Proposed Reduced scenarios. This consequently benefits dwellings and populations overflown by departures to the west from the South Runway. In particular this affects Blanchardstown and the surrounding communities which are relatively densely populated compared to other areas overflown.



This change in use of the runways means that there are also dwellings and populations experiencing a decrease between the scenarios. This can be clearly seen by looking at the dwellings exposed to 50 dB  $L_{night}$  in 2025. As shown in Table 42 the totals are similar for the Permitted and Proposed scenarios at just over 3,100 however as shown in Table 44 almost 1,700 dwellings become newly exposed to this level under the Proposed Scenario. Consequently, a similar number of dwellings benefit and decrease to below 50 dB  $L_{night}$ .

Nick Williams for Bickerdike Allen Partners LLP David Charles Partner

Bickerdike Allen Partners Architecture Acoustics Technology

# APPENDIX 1 GLOSSARY OF ACOUSTIC TERMINOLOGY

#### The Decibel, dB

The unit used to describe the magnitude of sound is the decibel (dB) and the quantity measured is the sound pressure level. The decibel scale is logarithmic and it ascribes equal values to proportional changes in sound pressure, which is a characteristic of the ear. Use of a logarithmic scale has the added advantage that it compresses the very wide range of sound pressures to which the ear may typically be exposed to a more manageable range of numbers. The threshold of hearing occurs at approximately 0 dB (which corresponds to a reference sound pressure of 2 x  $10^{-5}$  Pascals) and the threshold of pain is around 120 dB.

The sound energy radiated by a source can also be expressed in decibels. The sound power is a measure of the total sound energy radiated by a source per second, in watts. The sound power level,  $L_w$  is expressed in decibels, referenced to  $10^{-12}$  watts.

#### Frequency, Hz

Frequency is analogous to musical pitch. It depends upon the rate of vibration of the air molecules that transmit the sound and is measure as the number of cycles per second or Hertz (Hz). The human ear is sensitive to sound in the range 20 Hz to 20,000 Hz (20 kHz). For acoustic engineering purposes, the frequency range is normally divided up into discrete bands. The most commonly used bands are octave bands, in which the upper limiting frequency for any band is twice the lower limiting frequency, and one-third octave bands, in which each octave band is divided into three. The bands are described by their centre frequency value and the ranges which are typically used for building acoustics purposes are 63 Hz to 4 kHz (octave bands) and 100 Hz to 3150 Hz (one-third octave bands).

## A-weighting

The sensitivity of the ear is frequency dependent. Sound level meters are fitted with a weighting network which approximates to this response and allows sound levels to be expressed as an overall single figure value, in dB(A).

#### **Environmental Noise Descriptors**

Where noise levels vary with time, it is necessary to express the results of a measurement over a period of time. Some commonly used descriptors follow.

#### Noise Metric Description

L<sub>Aeq, T</sub>

L<sub>Aeq,T</sub>, or the equivalent continuous A-weighted sound pressure level, is the most widely used noise metric. It is an energy average and is defined as the level of a notional sound which would deliver the same A-weighted sound energy as the actual variable sound over a defined period of time, T.

 $L_{Aeq,16h}$  and  $L_{Aeq,8h}$  are commonly used to describe the daytime period (07:00 to 23:00) and night-time period (23:00 to 07:00) respectively. In the context of aircraft noise, these are typically averaged over the summer period (92 days from June 16th to September 15th inclusive) and are referred to as the summer day and summer night values.

 $L_{den}$ , or the day-evening-night noise indicator, is a long-term average (usually annual in the context of aircraft noise) 24 hour  $L_{Aeq,T}$  value where a 10 dB penalty is applied to noise at night and a 5 dB penalty is applied to noise in the evening. It is defined by the following formula:

$$L_{den} = 10 \times Log \left( \frac{12}{24} \times 10^{\left(\frac{L_{day}}{10}\right)} + \frac{4}{24} \times 10^{\left(\frac{L_{eve} + 5}{10}\right)} + \frac{8}{24} \times 10^{\left(\frac{L_{night} + 10}{10}\right)} \right)$$

Where:

 $L_{day}$  is the A-weighted long-term average sound level for the 12 hour daytime period (07:00 to 19:00),

 $L_{eve}$  is the A-weighted long-term average sound level for the 4 hour evening period (19:00 to 23:00), and

L<sub>night</sub> is the A-weighted long-term average sound level for the 8 hour night-time period (23:00 to 07:00).

L<sub>Amax,T</sub> L<sub>Amax,T</sub> is the maximum A-weighted sound pressure level measured in a defined period, T. Normally associated with a time weighting, F (fast, L<sub>AFmax,T</sub>) or S (slow, L<sub>ASmax,T</sub>), which is related to the sampling speed of the measurement instrument. It is sometimes used independently of a time period, for example when describing the maximum value of a single aircraft flyover.